On the Origin of Resistive Switching Volatility in TiO2 thin films

نویسندگان

  • Simone Cortese
  • Maria Trapatseli
  • Ali Khiat
  • Themistoklis Prodromakis
چکیده

Resistive switching (RS) and Resistive Random Access Memories (ReRAMs) that exploit it have attracted huge interests for next generation non volatile memory (NVM) applications, also thought to be able to overcome flash memories limitations when arranged in crossbar arrays. A cornerstone of their potential success is that the RS between two different resistive states, usually High (HRS, High resistive state) and Low(LRS, Low Resistive State) is an intrinsic non-volatile phenomenon with the two states thermodynamically stable. Titanium Dioxide is one of the most common materials known to show non-volatile RS. In this paper we report the first observed volatile resistive switching (VRS) in a Titanium Dioxide thin film. The aim of this paper is to study and understand the VRS phenomenon to give an extensive picture of its underlying Physics. A possible exploitation of the VRS could be in access devices in ReRAM crossbar arrays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of resistive switching in anodized titanium dioxide thin films

In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications.  Increasing anodizing duration will increase nanotube lengths which itself c...

متن کامل

Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon.

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin fi...

متن کامل

High ON/OFF Ratio and Quantized Conductance in Resistive Switching of TiO2 on Silicon

TiO2 has been investigated extensively as an active resistive switching (RS) material for resistive random access memory. In this letter, single-crystal anatase-TiO2 thin films fabricated on silicon by atomic layer deposition are used to realize highly stable and clean bipolar RS behavior with a record high ON/OFF ratio (∼107) and low leakage current in the highresistance state. The switching c...

متن کامل

Improved switching characteristics of TiO2-x ReRAM with embedded ultra-thin

Transition metal-oxide resistive random access memory (RRAM) devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming switching voltages and low yields. Engineering of the active layer by doping or addition of thin oxide...

متن کامل

Effects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films

In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016